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Abstract 

The matrices resulting from the discretisation of non-local operators occurring in 
the boundary element method (BEM) are fully populated and require special 
compression techniques for efficient treatment. Among the several standard 
techniques, the H-matrix representation is used to approximate the dense 
stiffness matrix in admissible blocks which can be approximated by low-rank 
matrices. This paper presents a geometric cross approximation (GCA) algorithm 
to assemble the low-rank matrices. Compared with the adaptive cross 
approximation (ACA), the GCA determines the skeleton points from the two 
interacting groups of nodes corresponding to an admissible block by their 
topological spatial relations directly and, thus, has a remarkable non-iterative 
nature and requires the spatial geometric information of the nodes, only. 
Numerical examples are presented to further demonstrate the feasibility and 
effectivity. 
Keywords: H-matrix, dense matrix, low-rank matrices, adaptive cross 
approximation, skeleton points, topological spatial relations. 

1 Introduction 

In the applied and engineering sciences, boundary element method (BEM) plays 
an important role, especially in the problems with infinite domain. However, the 
resulting matrices are in general dense and require computer memory 
consumption scale quadratically with respect to the degrees of freedom. The 
efficient treatment of dense matrices requires special compression techniques to 
reduce the storage requirement and speed up the arithmetic (e.g., inversion).  
     Several fast solutions of boundary integral equation have been developed in 
the last two decades. Well known are panel clustering [1, 2], multipole 
expansions [3–8], interpolation [9] and (adaptive) cross approximation [10–13]. 
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Even the wavelet technique can also be used to compress the resulting dense 
matrix, when the underlying geometry can be described by a few of smooth 
maps [14]. 
     The adaptive cross approximation (ACA) algorithm is proposed by Bebendorf 
[10] and Bebendorf and Rjasanov [11]. As can be seen in Eq. (1), this method 
takes the single-variable function which is the result of fixing some source points 
or field points of the kernel function as the basis of the interpolation space. The 
selected points are called skeleton points. Hence, the low rank approximation can 
be assembled when we have found an optimal set of the skeleton points. 
Obviously, the optimal set of the skeleton points is not unique. 
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This algorithm determines the skeleton points similarly to Gram-Schmidt 
orthogonalization. It uses only entries from the original matrix for the 
approximation of each block. This algorithm can be regarded as the algebraic 
counterparts of panel clustering and fast multipole methods. There is no need for 
the expansion of the kernel function. Compared with the FMM, the ACA is the 
easier parallelization of the algorithm [15] and much simpler to be implemented. 
Meanwhile, as an advantage over the FMM, an approximation of the global 
matrix can be used for preconditioning besides the near-field matrix [16]. The 
hybrid cross approximation (HCA) which combines the ACA algorithm and the 
interpolation-based separation of the kernel function is proposed by Börm and 
Grasedyck [13]. Likewise, an algorithm which determines the skeleton points 
using random sampling technique is proposed by Martinsson and Rokhlin [17]. 
     Our contribution is a new non-iterative method that implements the low rank 
approximation of each admissible block in the original matrix of BEM based on 
the geometric topological spatial relations. It is well known that the matrices of 
BEM are derived from the boundary integrals of the kernel functions. Compared 
with the constant element which can be directly performed analytical integration, 
it is not to avoid using numerical integration techniques when the higher order 
elements are used. Thus, it needs to perform the numerical integrations which 
correspond to the entries of the selected column or row in the matrices of the 
BEM in each iteration procedure of the ACA. The goal of the proposed method 
is separating the procedure of determining the skeleton points from the integral 
operation of the kernel function. The skeleton points are determined in advance 
from the perspective of the geometric characteristics. Then, the boundary 
integrals which correspond to the skeleton points in the far-field can be 
computed together with those for the near-field interaction. Integrals for both 
near-field and far-field interactions are computed in a unified framework in the 
same way as the traditional BEM. It will be convenient and effective to use 
higher order elements in the simulation.  
     The rest of this article is organized as follows: in Section 2, we introduce a 
simple model problem and describe the H-matrix format and the low rank 
approximation in short. In Section 3, we introduce the geometric cross 
approximation algorithm and provide numerical examples that show this 

538  Boundary Elements and Other Mesh Reduction Methods XXXVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



algorithm is effective in Section 4. Finally, the paper ends with conclusions in 
Section 5. 

2 The H-matrix format 

2.1 Model problem: integral equation 

Large dense matrices are usually derived from the BEM without additional 
structure. These matrices arise after the discretisation of the boundary integral 
equation 

 
[ ]( ) ( , ) ( ) ( )A u x K x y u y d y



   (2) 

where 3R is the boundary of the computational domain and K : R  is 
the kernel function. The kernel function might be the single or double layer 
kernel for the Laplacian: 
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The kernel functions ),( yxg SLP  and ),( yxg DLP  are asymptotically smooth. In 

fact, H-matrix is based on the typical kernel functions, singularities only occur at 
the diagonal and the function is smooth everywhere else[12].  
     A standard Galerkin discretisation of A[u](x) for a basis  ( ) , 1,...,j j I I n   , 

 1: ,...,n nV span   , yields a matrix A with entries 

 
)()()(),()(, ydxdyyxKxa ijji   

 

  (3) 

The support of the kernel function K(x,y) is in general not local. So, a dense 
matrix A arises. The computational complexity for computing and the storage 
requirement for storing a dense matrix are quadratic to the number of the degrees 
of freedom. Hence, an efficient approximation method has to be developed. 

2.2 Low-rank approximation 

The rank of a matrix A is defined as the number of linearly independent columns 
or rows of A. For a matrix A nmC  , the rank of A is bounded by the minimum 
value of the m and n. Although the matrices in the BEM usually have full rank, 
they can often be approximated by matrices having a much lower rank. For 
example, a matrix A nmC  , the rank of A is k. A low rank approximation of A 
can be represented as a factorisation of the form TUVA  with matrices 

kmkn RVRU   , (cf. Fig. 1). 

     The storage requirement in low rank approximation is k(m+n) in contrast to 
the quadratic cost mn for standard full matrix. Hence, if the k is small and the 
condition k(m+n) < mn is satisfied, A matrix is said to be of low rank. These 
matrices are favorably stored in the outer-product form.  
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Figure 1: The schematic diagram of the low rank approximation. 

 
 
     The operational complexity in the matrix-vector multiplication is also 
efficiently improved. In the standard representation, the number of dominant 
arithmetic operations is mn. In contrast to this, only 2k(m+n)-k-n additions and 
multiplications  of real numbers are necessary in the outer-product form. 
     The best possible low rank approximation of the matrix A nmC   can be 
obtained by its singular value decomposition (SVD). However, the cost of 
computing an SVD for a general matrix is expensive. For this reason, some cross 
approximation algorithms are applied [9–13]. In Section 3, we will construct the 
low rank approximation of the matrix A (cf. (3)) by a non-iterative cross 
approximation algorithm. 

3 The geometric cross approximation algorithm 

The cross approximation algorithm can be regarded as the procedure of 
searching the skeleton points from the two admissible interacting groups of 
nodes. The higher approximation accuracy can be obtained if the columns or 
rows in the two low rank matrices which are computed by the skeleton points 
have the larger linear independence. In the BEM, the kernel functions are 
asymptotically smooth, and are the decay functions of the distance between the 
source point and the field points. Thus, we try to determine the skeleton points 
based on the relative geometric relationship between the boundary nodes.  

 

 

Figure 2: The admissible block st  corresponds to a subset 
st  . 

     Usually, for the existence of low-range approximations in the case of 
asymptotically smooth kernels we have to subdivide the coefficient matrix A into 
admissible blocks that fulfill the admissibility condition. The algorithm that 
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constructs a partition of the coefficient matrix can be referred in [9–13]. Here, 
we just introduce a new cross approximation algorithm to approximate the 
admissible blocks by low rank matrices. 

  max , ( , )t s t sdiam B diam B dist B B  (4) 

This algorithm requires that the strong admissibility condition holds (cf. (4)). In 
other words, it will be effective only on those parts of the domain that are far 
from the singularity as well.  

3.1 The geometric octree structure for clustering nodes 

In this section, we will introduce the geometric octree structure for clustering the 
boundary nodes corresponding to the admissible block in the boxes Bs and Bt, 
respectively. Firstly, we fix axially parallel boxes Bs and Bt which bound the 
relational nodes of the BEM (Figs 2–3) and hold the strong admissibility 
condition (eqn. (4)).  
 

 

Figure 3: The boxes Bt and Bs in the three dimensions. 

     For simplicity, we take the box Bs as example. We construct an octree 
structure in the box Bs with the depth to be 3. The box of the octree parallel to 
the coordinate axes x, y and z, is the minimal box bounding all the boundary 
nodes and centered by the point S. This box is called the cell of level 0. Then, 
start dividing the parent cell into eight equal child cells of level 1. Continue 
dividing in this way, that is, take a parent cell of level k and divide it into eight 
child cells of level k+1. A cell having no child cells is called a leaf. Therefore, 
we can get sixty-four leaves in this octree structure. In the same way, we also 
construct the geometric octree structure in the box Bt. 

3.2 The right choice of nodes in the leaves 

In the preceding section, we construct the geometric octree structures and cluster 
all the nodes by the leaves in the boxes Bs and Bt. Obviously, there may be more 
than one node or no in some leaves. But, only one ‘best’ node will be recorded in 
a leaf where the extra nodes are existent. In the course of this section, we will 
introduce the right choice of nodes if there is more than one node in the leaves. 
     Firstly, we denote the center of the box Bt by T and the center of one of the 
leaves in the box Bt by O. As can be seen in Fig. 4, we denote the vector drawn 
from the center T to the center O by the vector A. The vectors can be obtained by 
drawing from the center O to the nodes in this leaf. For example, a node in this 
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Figure 4: The right choice of node in the leaf. 

 
leaf is denoted by P. So, we can obtain the vector B drawn from the center O to 
the node P. we define the quantity about the node P as follows 

 A B 
 
  (5) 

The quantity is the dot product between the vectors A and B. Obviously, there 
is the quantity about every node in this leaf. Then, the node which has the 
maximum will be recorded as the best choice in this leaf. Taking the same way 
in all of the leaves, we can obtain the right choice of nodes in all the leaves. 

3.3 The priority order of all the leaves for determining the skeleton points 

In the preceding sections, we cluster all the nodes in the boxes by the octree 
structure and obtain the right choice of nodes in the leaves. In the course of this 
section, we will determine the skeleton points by the priority order of all the 
leaves shown in Fig. 5. 
 

    

Figure 5: The priority orders of all the leaves in the octree structure. 

     We number the sixty-four leaves in a special way (Fig. 5). In this way, we can 
ensure that the serial numbers of two leaves are adjacent but the distance 
between them is almost farthest. We sequentially search the ‘best’ nodes in the 
leaves by serial number which denotes the priority order of the leaves. At last, 
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we can take the ‘best’ nodes in the box Bt as the skeleton points whose number 
does not excess a specified maximum number.  
     The same as the procedure of determining the skeleton points in the box Bt, 
we can obtain the skeleton points in the box Bs . Take the minimum value of the 
numbers of skeleton points in boxes Bt and Bs as the rank k of the low rank 
matrices U and V (cf. Sect. 2.2). We take the same number of skeleton points 
according to the rank k in the boxes Bt and Bs by their priority orders, 
respectively. 
     By the above method, we can obtain a set of skeleton points in boxes Bt and 
Bs, respectively. The distances between the skeleton points are farthest as 
possible, so that the columns or rows in low-rank matrices which correspond to 
the skeleton points can be linearly independent as large as possible. 

3.4 Assembling the low rank approximation 

In Section 3.3, we have obtained the skeleton points in the two boxes. Then, the 
low rank approximation represented as the out-product form (cf. Sect. 2.2) can 
be obtained as follows: 
     Firstly, the low rank matrix U is assembled as its columns derived from the 
matrix A which correspond to the skeleton points in the box Bs. Secondly, we 
construct the low rank matrix VT as its rows derived from the matrix A which 
correspond to the skeleton points in the box Bt. At last, we obtain the low rank 
approximation of the matrix A. However, the amount of storage required for the 
low rank approximation can still be reduced, for the low rank matrices U and V 
usually have orthonormal columns.  
     Hence, we assemble the low rank approximation based on the pseudo-
skeleton representation as follows: 
 

nikjm
T

kk
AAAUV :1,

1
,:1 :1:1

  (6) 

where
kk jik AA
:1:1 ,: . The parts

kjmA
:1,:1 and ni k

A :1,:1
are derived from the original 

matrix A the same as the matrices U and V. In this way, we construct the 
matrix V 
 

nik
T

k
AAV :1,

1

:1

  (7) 

where 1
kA  assembled by the SVD of the matrix kA . 

4 Numerical examples 

The purpose of this section is to validate the new algorithm. In this section, we 
apply the GCA and the ACA in the examples with the single layer potential for 
comparison.  
     Here, we consider the matrix A with entries  

njmi
yx

A
ji

ij 


 ,
1

:  

where the vertices xi X , yj Y , are chosen as in the following figures.  
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Figure 6: The geometries for the examples with the single layer potential. 

Table 1:  Numerical results for the examples with the GCA and ACA. 

Examples m n 
GCA ACA 

k Rel.Err k Rel.Err 

1 1600 1600 4 52.5 10  4 51.1 10  

2 3600 3600 5 58.4 10  5 51.3 10  

3 1600 1600 5 66.0 10  4 58.8 10  

4 3600 3600 4 68.4 10  4 52.0 10  

5 3600 3600 3 61.2 10  3 53.9 10  

6 2700 2025 4 75.2 10  4 57.3 10  

7 3200 3200 6 56.7 10  6 52.4 10  

8 3200 1600 4 56.8 10  4 41.0 10  

9 1600 3200 4 63.2 10  5 54.3 10  
 
     The numerical results for the examples shown in Fig. 6 are listed in Table 1. 
In the Table, m and n denote the numbers of the vertices in the domains X and Y, 
respectively. The “Rel.Err” giving the relative error 1

2
I A A   and the 

corresponding rank k obtained by the GCA and the ACA are listed in columns 4, 
5, 6, 7, respectively. It is seen that the new algorithm can compute the low rank 
efficiently.  

5 Conclusions 

A new low rank approximation algorithm is proposed in this paper. This 
algorithm determines the skeleton points based on their topological spatial 
relations which just needs the spatial geometric information of the nodes. As it 
has been detailed, this algorithm can determine the skeleton points in the 
admissible interacting blocks in advance, and the boundary integrals which 
correspond to the skeleton points in the far-field can be computed together with 
those for the near-field interaction. Integrals for both near-field and far-field 
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interactions are computed in a unified framework in the same way as the 
traditional BEM. It will be convenient and effective to use higher order elements 
in the simulation. Numerical examples have shown that the new algorithm can 
compute the low rank approximation efficiently. Concerning its advantages 
stated above, our method deserves further consideration. The low rank 
approximation of the kernel functions with the double layer potential is ongoing 
work. 
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